Videos streaming images jeux et buzz
Connexion






Perdu le mot de passe ?

Inscrivez-vous maintenant !
Menu Principal
Communauté


« 1 ... 6 7 8 (9) 10 11 12 ... 20 »


Poum45
 0  #161
Je poste trop
Inscrit: 03/12/2007 23:03
Post(s): 59592
Karma: 4214
Citation :

@Sheitz a écrit: (1/2 x 1/2 x 1/2 = 1/8).


bien tenté mais non. 🙂 Il y a plus de probabilités que 1/8.

Pour info, cette énigme peut-être résolue de deux manières.
Soit intuitivement, soit mathématiquement.

J'avoue que la première méthode est 100 fois plus accessible pour ne pas dire plus simple alors que la seconde demande de bons bagages mathématique 🙂

En gros, tout le monde peut la résoudre mais peu vont comprendre le raisonnement mathématique ^^

Contribution le : 21/02/2017 22:31
_________________
Les mouches m'agacent mais Le Croco c'est par là
Signaler

clouvet
 0  #162
Je m'installe
Inscrit: 16/01/2016 08:45
Post(s): 210
@Poum45

J'ai bien une réponse mais faire la démonstration sur le forum me parait impossible ( fractions, intégrales,......)

Contribution le : 22/02/2017 08:28
Signaler

Poum45
 0  #163
Je poste trop
Inscrit: 03/12/2007 23:03
Post(s): 59592
Karma: 4214
@clouvet il ne faut pas laisser couler le topic alors lance-toi 🙂

Si OK, je vous ferai la démonstration simple ^^

Contribution le : 22/02/2017 08:56
_________________
Les mouches m'agacent mais Le Croco c'est par là
Signaler

Nyark_Nyark
 0  #164
Je masterise !
Inscrit: 29/01/2015 14:41
Post(s): 2909
Karma: 1830
Il y a 100% de chances que deux points soient sur un même demi-cercle.
Donc je dirais qu'il y a une chance sur deux qu'un 3ème points soit sur un demi-cercle commun aux deux autres.

Tentative d'explication :
On peut remplacer chaque point par un nombre de 0 à 360.
Si la différence entre le plus grand et le plus petit est inférieure à 180 (ce qui doit faire une chance sur deux), on est dans le même demi-cercle, sinon non.

C'pas ça ? 🙂

Contribution le : 22/02/2017 12:06
Signaler

clouvet
 0  #165
Je m'installe
Inscrit: 16/01/2016 08:45
Post(s): 210
Je m'en sort pas avec la mise en page, sinon je trouve 0,75

Contribution le : 22/02/2017 12:31
Signaler

Nyark_Nyark
 0  #166
Je masterise !
Inscrit: 29/01/2015 14:41
Post(s): 2909
Karma: 1830
Citation :

@Nyark_Nyark a écrit:
Si la différence entre le plus grand et le plus petit est inférieure à 180 ... on est dans le même demi-cercle ...

Ah ouais mais non en effet j'en ai oublié un peu... :lol:
Y'a aussi les cas où :
max - milieu > 180
ou milieu - min > 180

Du coup, on doit effectivement passer à 75%.

Contribution le : 22/02/2017 14:04
Signaler

Poum45
 0  #167
Je poste trop
Inscrit: 03/12/2007 23:03
Post(s): 59592
Karma: 4214
@clouvet @Nyark_Nyark oui, c'est bien 75% à savoir 3 chances sur 4

Voilà les deux raisonnements plus celle de Nyark_Nyark qui en font trois 🙂

Intuitivement

Les deux premiers points sont forcement sur un même demi-cercle.
Si les deux premiers points sont très proches, le troisième sera très probablement sur un même demi-cercle.
Si les deux premiers points sont presque diamétralement opposés (mais pas exactement),
la probabilté que le troisième points soit sur le même demi-cercle sera de 1/2.
Intuitivement on voit donc que la probabilté sera entre 1/2 et 1.

Mathématiquement

Soit X, Y et Z les trois points disposés sur le cercle.
On "coupe" le cercle au point diamétralement opposé à X.
On considère ainsi le segment partant de cette "coupure" et y retournant en parcourant le cercle dans le sens trigonométrique.
On gradue ce segment entre -1 (compris) et +1 (exclu).
On note x, y et z les positions respectives des points X, Y et Z sur ce segment.
On a donc x = 0 et -1 <= y < 1 et -1 <= z < 1.
La probabilité que les trois points soient sur le même demi-cercle devient ainsi
la probalité que |y-z| <= 1
C'est à dire -1 <= y - z <= 1
d'où -1 + z <= y <= 1 + z
z et y étant tirés aléatoirement (et uniformément) entre -1 et 1, on a
P(z) = P(-1 + z <= y <= 1 + z) = 1 - ( |z| / 2 )
si l'on intègre P(z) entre -1 et 1, on trouve :
integrale( P(z), -1, 1 ) = integrale( 1 + z/2, -1, 0 ) + integrale( 1 - z / 2, 0, 1 )
integrale( P(z), -1, 1 ) = 2 * integrale( 1 - z / 2, 0, 1 )
integrale( P(z), -1, 1 ) = 2 * ( 1 - 1/(2*2) ) = 2 * 3/4
donc integrale( P(z), -1, 1 ) / (1 - (-1)) = 3/4
La probabilité que les trois points soient sur le même demi-cercle est donc de 3/4.

A vous la relance 🙂

Contribution le : 22/02/2017 14:07
_________________
Les mouches m'agacent mais Le Croco c'est par là
Signaler

Nyark_Nyark
 0  #168
Je masterise !
Inscrit: 29/01/2015 14:41
Post(s): 2909
Karma: 1830
@clouvet a donné la réponse en premier.
A vous l'honneur monsieur.

Contribution le : 22/02/2017 14:13
Signaler

Sheitz
 0  #169
Je suis accro
Inscrit: 14/08/2010 21:32
Post(s): 563
Karma: 218
Ok je préfère quand même la solution de @Nyark_Nyark aha

J'avais carrément oublié que deux points étaient forcément sur le même demi-cercle, je suis un peu trop souvent étourdi j'ai l'impression.. :lol:

Contribution le : 22/02/2017 22:43
_________________
"May I make a suggetion ? Run !"
Signaler

clouvet
 0  #170
Je m'installe
Inscrit: 16/01/2016 08:45
Post(s): 210
Dans un pays éloigné, on savait que si vous buviez du poison, la seule façon de vous sauver est de boire un poison plus fort, ce qui neutralise le poison le plus faible.
Le roi qui gouvernait le pays voulait s'assurer qu'il posséderait le plus fort poison du royaume, afin d'assurer sa survie.
Alors le roi appela le pharmacien du royaume et le trésorier du royaume, il donna à chacun une semaine pour faire le poison le plus fort. Alors, chacun buvait le poison de l'autre, puis le sien, et celui qui survivra, serait celui qui avait le poison le plus fort.
Le pharmacien est allé directement au travail, mais le trésorier savait qu'il n'avait aucune chance, car le pharmacien avait beaucoup plus d'expérience dans ce domaine, alors il a élaboré un plan pour survivre et s'assurer que le pharmacien meurt.
Le dernier jour, le pharmacien a soudainement réalisé que le trésorier savait qu'il n'avait aucune chance, donc qu’il avait concocté un plan.
Après une petite réflexion, le pharmacien réalise ce que le plan du trésorier doit être, et il concocte également un plan de contre, pour s'assurer de sa survie et la mort du tésorier.
Le temps venu, le roi les appela tous les deux.
Ils ont bu les poisons comme prévu, et le trésorier est mort, le pharmacien a survécu, et le roi n'a pas obtenu ce qu'il voulait.

Que s'est-il passé exactement ?

Contribution le : 23/02/2017 08:30
Signaler

Carraidas
 0  #171
Je masterise !
Inscrit: 10/07/2014 18:35
Post(s): 2748
Karma: 2002
Le trésorier sait qu'il ne pourra pas faire un poison plus fort que le pharmacien, et se dit que quitte à mourir, il préfère qu'ils soient deux. Du coup il refourgue de l'eau au pharmacien et les deux ne boivent donc qu'un poison et meurent.

Mais ça ne colle pas avec ce que tu dis, puisque ça impliquerait que le trésorier y passe aussi, et que normalement dans son plan, il survit.

Donc pour moi, la seule manière qu'il ai de survivre, outre le fait de faire un poison plus fort que le pharmacien, ce qui est impossible, est de ne pas boire de poison du tout. Et c'est là que je ne pige pas le truc. Alors à moins de partir dans des trucs alambiqués du genre "il garde le poison dans sa bouche sans l'avaler", ce qui laisse la place à toutes les suppositions possibles, j'avoue que pour le moment, je ne vois pas comment il peut empêcher le pharmacien de lui faire boire un poison plus fort que le sien.

Mais l'énigme est sympa en tout cas, j'ai hâte d'en connaître la solution.

Contribution le : 25/02/2017 18:35
Signaler

clouvet
 0  #172
Je m'installe
Inscrit: 16/01/2016 08:45
Post(s): 210
@Carraidas

Tu es très prêt de la solution, il n'y a pas de trucs alambiqués.

Contribution le : 26/02/2017 07:33
Signaler

Poum45
 0  #173
Je poste trop
Inscrit: 03/12/2007 23:03
Post(s): 59592
Karma: 4214
Perso, je ne vois pas 🙂

Citation :

@clouvet a écrit: il n'y a pas de trucs alambiqués.

Donc, pas de poison ? 😃

Contribution le : 27/02/2017 19:10
_________________
Les mouches m'agacent mais Le Croco c'est par là
Signaler

clouvet
 0  #174
Je m'installe
Inscrit: 16/01/2016 08:45
Post(s): 210
alambiqué adj.
Qui recherche une subtilité excessive ; qui est trop raffiné, contourné, compliqué à l'excès.

J'en dirait pas plus !

Contribution le : 27/02/2017 19:42
Signaler

Nyark_Nyark
 0  #175
Je masterise !
Inscrit: 29/01/2015 14:41
Post(s): 2909
Karma: 1830
Le plan du trésorier était d'échanger les poisons, du coup le pharmacien a fait du jus de pomme ? :lol:

Contribution le : 28/02/2017 10:17
Signaler

clouvet
 0  #176
Je m'installe
Inscrit: 16/01/2016 08:45
Post(s): 210
@Nyark_Nyark

C'est un peu (beaucoup) simpliste : développe !

Contribution le : 28/02/2017 16:27
Signaler

Nyark_Nyark
 0  #177
Je masterise !
Inscrit: 29/01/2015 14:41
Post(s): 2909
Karma: 1830
Je plaisantais, j'imagine que le plan d'échanger les poisons n'est pas recevable.

Contribution le : 28/02/2017 16:53
Signaler

Wiliwilliam
 0  #178
La loi c'est moi
Inscrit: 07/04/2012 19:19
Post(s): 38207
Karma: 18928
bvph44, lorsque tu donnes une réponse, tu dois la justifier, et non simplement la donner.

Contribution le : 28/02/2017 16:54
_________________
>> Récompenses si tu passes en article <<
Signaler

Zertyy
 0  #179
Serial Locker
Inscrit: 22/01/2007 23:42
Post(s): 19078
Karma: 5721
@Wiliwilliam à raison, c'est la dernière fois qu'on te le dis @clouvet /bvph44

Il y a une règle du jeu @Poum45, il ne l'a pas respecté, il ne relance pas.

Merci à tous et bonne continuation 😉

Contribution le : 28/02/2017 22:53
_________________
Signaler

clouvet
 0  #180
Je m'installe
Inscrit: 16/01/2016 08:45
Post(s): 210
@Wiliwilliam @Zertyy et aux autres


Contribution le : 01/03/2017 07:50
Signaler


 Haut   Précédent   Suivant
« 1 ... 6 7 8 (9) 10 11 12 ... 20 »






Si vous êtes l'auteur d'un élément de ce site, vous pouvez si vous le souhaitez, le modifier ou le supprimer
Merci de me contacter par mail. Déclaré à la CNIL N°1031721.